В Виннице разыскивают без вести пропавших мать с сыном

 
Нaпoмним, зa двa мeсяцa в Кирoвoгрaдскoй области разыскали 37 человек, скрывавшихся от следствия.
Могла быть одета в черную дубленку, белую шапку, черные кожаные сапоги. Приметы пропавшей женщины: на вид 35 лет, рост 170-175 см, худощавого телосложения, лицо овальное, волосы короткие.
Приметы пропавшего мальчика: на вид 7 лет, рост около 150 см, худощавого телосложения, лицо овальное, русые волосы. Мог быть одет в темно-синюю матерчатую куртку, светло-серые спортивные штаны, черные сапоги.
Женщина с мальчиком 11 декабря текущего года ушли из дома и не вернулись, сообщает УНН-Центр со ссылкой на пресс-службу ГУНП в Винницкой области. Винницкие полицейские разыскивают без вести пропавших жителей областного центра — 36-летнюю Надежду Наумову и ее 7-летнего сына Евгения Наумова.

Ученым удалось кардинально увеличить время существования звуковых волн внутри стекла

При этoм, зa счeт нeoбычнoй тexнoлoгии вoзбуждeния aкустичeскиx вoлн oни, эти вoлны, рaспрoстрaнялись и сущeствoвaли в oптичeскoм вoлoкнe гoрaздo дoльшe, чeм при oбычныx услoвияx. «Наша работа является первым шагом к появлению новой области — программируемой акустической динамики в стеклянной среде» — рассказывает Питер Рэкич (Peter Rakich), ученый из Йельского университета, — «Принципы этой динамики позволят реализовать новые методы управления светом, распространяющимся в стеклянной среде, что может быть использовано при разработке фотонных вычислительных устройств, оптических коммуникационных устройств, датчиков и многого другого». Этот свет приводил к генерации звуковых волн одной частоты, которые распространяясь по оптическому волокну, изменяли свою частоту и регистрировались специальными датчиками. Они использовали свет лазера со строго определенной длиной волны для генерации интенсивных акустических волн в ядре волновода стеклянного акустического волокна. Исследователи считают, что данное достижение может стать основой новых технологий высокоточных измерений и новых принципов обработки информации. Такая высокая прозрачность, низкая стоимость и высокая технологичность стекла обуславливает то, что оно является основой всех оптоволоконных технологий, используемых для передачи больших объемов информации. И при достижении температурной точки, лежащей в пределах криогенного диапазона, стекло практически перестает быть акустическим проводником.Группа ученых из Йельского университета нашла путь к увеличению акустической проводимости стекла. Но у стекла имеется и несколько загадочных свойств. В 1960-х годах ученые обнаружили еще целый ряд озадачивающих свойств стекла, оно проводит тепло намного хуже, чем ожидалось, и оно нагревается гораздо медленнее, чем определено теорией, учитывающей кристаллическое строение этого материала. Однако, в отличие от большинства других материалов, акустическая проводимость стекла резко падает при снижении температуры.Такие специфические акустические свойства достаточно долго являлись тайной для ученых, исследующих и использующих стекло в своих экспериментах. Однако, истинная природа этих «акустических атомов» в стеклянной среде так и не до конца понята учеными и по сегодняшний день.В дальнейших исследованиях ученые выяснили, что величина коэффициента поглощения «акустических атомов» в стекле увеличивается по мере снижения температуры. Позже ученые нашли объяснение этим фактам, они заключаются в наличии внутри стекла поглощающих областей, которые взаимодействуют со звуковыми колебаниями в той же самой манере, как атомы взаимодействуют со светом. Свет может распространятся по оптическому волокну, которое изготавливается преимущественно из кварцевого стекла, на десятки километров, прежде, чем его интенсивность начнет заметно снижаться. При комнатной температуре стекло является превосходным проводником акустических волн, в этом достаточно легко удостовериться, несильно стукнув чем-то металлическим по краю стеклянного бокала и слыша «стеклянный звон» в течение нескольких секунд. Известно, что кварцевое стекло является одним из самых прозрачных материалов на свете.